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ABSTRACT

We propose a generalized focal loss function based on the
Tversky index to address the issue of data imbalance in med-
ical image segmentation. Compared to the commonly used
Dice loss, our loss function achieves a better trade off between
precision and recall when training on small structures such as
lesions. To evaluate our loss function, we improve the atten-
tion U-Net model by incorporating an image pyramid to pre-
serve contextual features. We experiment on the BUS 2017
dataset and ISIC 2018 dataset where lesions occupy 4.84%
and 21.4% of the images area and improve segmentation ac-
curacy when compared to the standard U-Net by 25.7% and
3.6%, respectively.

Index Terms— semantic segmentation, attention net-
works, Tversky index, data imbalance

1. INTRODUCTION

A common task in medical image analysis is the ability to de-
tect and segment pathological regions that typically occupy
a very small fraction of the full image. Such imbalance in
the data can lead to instability in established generative and
discriminative frameworks [1]. In recent literature, convo-
lutional neural networks (CNNs) have been successfully ap-
plied to automatically segment 2D and 3D biological data [1].
Most of the current deep learning methods derive from a fully
convolutional network architecture (FCN), where the fully
connected layers are replaced by convolutional layers [2]. The
popular U-Net is an FCN variant which has become the de-
facto standard for image segmentation due to its multi-scale
skip connections and learnable up-convolution layers [3].

A dominant research area in image segmentation is to de-
velop strategies to deal with class imbalance. The focal loss
function proposed in [4] reshapes the cross-entropy loss func-
tion with a modulating exponent to down-weight errors as-
signed to well-classified examples. The focal loss prevents
the vast number of easy negative examples from dominating
the gradient to alleviate class-imbalance. In practice however,

Code available at https://github.com/nabsabraham/focal-tversky-unet

it faces difficulty balancing precision and recall due to small
regions-of-interest (ROI) found in medical images. Research
efforts to address small ROI segmentation propose more dis-
criminative models such as attention gated networks [5], [6].
CNNs with attention gates (AGs) focus on the target region,
with respect to the classification goal, and can be trained end-
to-end. At test time, these gates generate soft region proposals
to highlight salient ROI features and suppress feature activa-
tions by irrelevant regions.

To address the issues of data imbalance and training per-
formance, we combine attention gated U-Net with a novel
variant of the focal loss function, better suited for small lesion
segmentation. Our major contributions include (1) a novel
focal Tversky loss function for highly imbalanced data and
small ROI segmentation, where we modulate the Tversky in-
dex [7] to improve precision and recall balance, and (2) a
deeply supervised attention U-Net [5], improved with a multi-
scaled input image pyramid for better intermediate feature
representations. Experiments were performed on the Breast
Ultrasound Lesions 2017 dataset B (BUS) [8] and the ISIC
2018 skin lesion dataset [9], [10], both datasets suffering from
class imbalance and large intra class variation in lesion sizes.
On average, the lesions occupy 4.84%± 5.43% and 21.4%±
20.3% in ISIC 2018 dataset and BUS dataset B, respectively.
When compared to the baseline U-Net, our methods improves
Dice scores by 25.7% and 3.6% for BUS dataset B and ISIC
2018, respectively.

2. METHODOLOGY

2.1. Focal Tversky Loss

In the medical community, the Dice score coefficient (DSC)
is an overlap index that is widely used to assess segmentation
maps. The 2-class DSC variant for class c is expressed in
Equation 1, where gic ∈ {0, 1} and pic ∈ [0, 1] represent the
ground truth label and the predicted label, respectively. The
total number of pixels in an image is denoted by N . The ε
provides numerical stability to prevent division by zero.
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Fig. 1. The focal Tversky loss non-linearly focuses train-
ing on hard examples (where Tversky Index < 0.5) and sup-
presses easy examples from contributing to the loss function.

DSCc =

∑N
i=1 picgic + ε∑N

i=1 pic + gic + ε
(1)

A common method to reduce the effects of class imbal-
ance is to introduce a weight wc for each class c, which is
inversely proportional to the label frequency [11]. The linear
Dice loss (DL) is therefore defined as a minimization of the
overlap between the prediction and ground truth [12]:

DLc =
∑
c

1−DSCc (2)

One of the limitations of the Dice loss function is that
it equally weighs false positive (FP) and false negative (FN)
detections. In practice, this results in segmentation maps with
high precision but low recall. With highly imbalanced data
and small ROIs such as skin lesions, FN detections need to be
weighted higher than FPs to improve recall rate. The Tversky
similarity index is a generalization of the Dice score which
allows for flexibility in balancing FP and FNs:

TIc =

∑N
i=1 picgic + ε∑N

i=1 picgic + α
∑N
i=1 pic̄gic + β

∑N
i=1 picgic̄ + ε

(3)
where, pic is the probability that pixel i is of the lesion

class c and pic̄ is the probability pixel i is of the non-lesion
class, c̄. The same is true for gic and gic̄, respectively. Hyper-
parameters α and β can be tuned to shift the emphasis to im-
prove recall in the case of large class imbalance. The Tversky
index is adapted to a loss function (TL) in [7] by minimizing∑
c 1− TIc.
Another issue with the DL is that it struggles to segment

small ROIs as they do not contribute to the loss significantly.
To address this, we propose the focal Tversky loss function
(FTL), parametrized by γ, for control between easy back-
ground and hard ROI training examples. In [4], the focal pa-
rameter exponentiates the cross-entropy loss to focus on hard

classes detected with lower probability. This idea has been
extended in recent works where an exponent is applied to the
Dice score [13] or a combination of Dice and cross-entropy
[11], [14]. Similarly, we define our Focal Tversky Loss (FTL)
function as:

FTLc =
∑
c

(1− TIc)
1/γ (4)

where γ varies in the range [1, 3]. In practice, if a pixel
is misclassified with a high Tversky index, the FTL is unaf-
fected. However, if the Tversky index is small and the pixel
is misclassified, the FTL will decrease significantly.

When γ > 1, the loss function focuses more on less ac-
curate predictions that have been misclassified. However, we
observe over-suppression of the FTL when the class accuracy
is high, usually as the model is close to convergence. This
trend is visualized in Figure 1 as increasing values of Tver-
sky index are mapped to flatter regions of the FTL curve with
increasing values of γ. We experiment with high values of γ
and observe the best performance with γ = 4

3 and therefore
train all experiments with it. To combat the over-suppression
of the loss function, we train intermediate layers with the FTL
but supervise the last layer with the Tversky loss to provide a
strong error signal and mitigate sub-optimal convergence.

We hypothesize using a higher α in our generalized loss
function will improve model convergence by shifting the fo-
cus to minimize FN predictions. Therefore, we train all mod-
els with α = 0.7 and β = 0.3. It is important to note that in
the case of α = β = 0.5, the Tversky index simplifies to the
DSC. Moreover, when γ = 1, the FTL simplifies to the TL.

2.2. Network Architecture

To achieve further balance between precision and recall, we
propose an improved attention U-Net [5] that incorporates the
proposed FTL. This architecture is based on the popular U-
Net which has been designed to work well with very small
number of training examples (Figure 2). The network is com-
posed of a contracting path to extract locality features and
an expansive path, to resample the image maps with contex-
tual information. Skip connections are used to combine high-
resolution local features with low-resolution global features
and encourage more semantically meaningful outputs.

At the deepest stage of encoding, the network has the
richest possible feature representation. However, with cas-
caded convolutions and non-linearities, spatial details tend to
get lost in the high-level output maps. This makes it difficult
to reduce false detections for small objects that show large
shape variability [5]. To address this issue, we use soft atten-
tion gates (AGs) to identify relevant spatial information from
low-level feature maps and propagate it to the decoding stage.

AGs produce attention coefficients αi ∈ [0, 1] at each
pixel i, that scale input feature maps xli, at layer l, to out-
put semantically relevant features, x̂il , as depicted in Figure
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Fig. 2. Proposed Attention U-Net architecture with input image pyramid and deep supervised output layers.

3. A gating signal, g, is used for each pixel i to determine fo-
cus regions. It is collected from a coarser scale than the input
query signal, xli to compute intermediate activation maps:

qlattn = ψT (σ1(WT
x x

l
i +WT

g gi + bg)) + bψ (5)

where the linear attention coefficients, qlattn, are com-
puted by the element-wise sum and 1x1 linear transforma-
tions, parameterized by Wx, bx, Wg and bg . The intermediate
maps are transformed by ReLU and sigmoid non-linearities
applied as σ1 and σ2, respectively:

αli = σ2(qlattn(xli, gi)) (6)

The attention coefficients αi scale the low level query sig-
nal xli by an element-wise product and retain only relevant
activations. These pruned features are then concatenated with
upsampled output maps at each scale in the expansive stage.
The lowest-level feature maps, i.e. the first skip connections,
are not used in the gating function as they do not represent
input data in a high dimensional space [5]. A 1x1x1 convolu-
tion and sigmoid activation is applied on each output map in
the expansive stage. Every high dimensional feature represen-
tation is supervised with our FTL, with the exception of the
last layer, to avoid loss over-suppression. This tactic of deep
supervision, introduced in [15], forces intermediate layers to
be semantically discriminative at every scale. Moreover, it
helps to ensure that attention unit has the ability to influence
the responses to a large range of image foreground content.

Moreover, since different kinds of class details are more
easily accessible at different scales, we inject the encoder
layers with an input image pyramid before each of the max-
pooling layers. Combined with deep supervision, this method
improves segmentation accuracy for datasets where small
ROI features can get lost in cascading convolutions and facil-
itates the network learning more locality aware features with
respect to the classification goal.

Fig. 3. Schematic of additive attention gate (AG) adapted
from [5]. Input features xl are scaled with attention coeffi-
cients αi to propagate relevant features to the decoding layer
output x̂l. The coarser gating signal g provides contextual
information while spatial regions from the input xl provide
locality information. Feature map resampling is computed by
bilinear interpolation.

3. EXPERIMENTS

We validate the FTL on two datasets where the ROI class is
significantly smaller than the background class and observe
large performance gains. We experiment with the Breast Ul-
trasound Dataset B (BUS) open-sourced in [8]. This dataset
consists of 163 ultrasound images of breast lesions from dif-
ferent women. The average image size is 760 x 570 pixels
where each of the images presented one or more lesions. For
our experiments, the data is resampled to 128 x 128 pixels
with a 75-25 train-test split. To extend our proposed method
to larger datasets, we extract training data from the ISIC 2018:
Skin Lesion Analysis Towards Melanoma Detection grand
challenge dataset [9], [10]. This dataset consists of 2,594
RGB images of skin lesions with an average image size of
2166 x 3188 pixels. For our experiments, the dataset is re-
sampled to 192 x 256 pixels with 75-25 train-test split.

To present a fair evaluation of our multi-scaled attention
U-Net and the focal Tversky loss, we do not augment our
datasets or incorporate any transfer learning. We study 7
cases of variations within U-Net and the Tversky loss func-
tion while comparing to the baseline U-Net trained with Dice
loss. Ablation test results are recorded in Section 3 with 5-
fold cross validation for Dice scores, precision and recall.
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Table 1. Performance on BUS 2017 Dataset B with 40 test images

Model Parameters DSC Precision Recall
U-Net + DL α = 0.5, β = 0.5 0.547 ± 0.04 0.653 ± 0.171 0.658 ± 0.146
U-Net + TL α = 0.7, β = 0.3 0.657 ± 0.02 0.732 ± 0.072 0.723 ± 0.074

U-Net + FTL α = 0.7, β = 0.3, γ = 4/3 0.669 ± 0.033 0.775 ± 0.047 0.715 ± 0.057
Attn U-Net + DL α = 0.5, β = 0.5 0.615 ± 0.020 0.675 ± 0.042 0.658 ± 0.049

Attn U-Net + Multi-Input + DL α = 0.5, β = 0.5 0.716 ± 0.041 0.759 ± 0.092 0.751 ± 0.046
Attn U-Net + Multi-Input + TL α = 0.7, β = 0.3 0.751 ± 0.042 0.802 ± 0.073 0.768 ± 0.056

Attn U-Net + Multi-Input + FTL α = 0.7, β = 0.3, γ = 4/3 0.804 ± 0.024 0.829 ± 0.027 0.817 ± 0.022

Table 2. Performance on ISIC 2018 with 649 test images

Model Parameters DSC Precision Recall
U-Net + DL α = 0.5, β = 0.5 0.820 ± 0.013 0.849 ± 0.038 0.867 ± 0.048
U-Net + TL α = 0.7, β = 0.3 0.838 ± 0.026 0.822 ± 0.051 0.917 ± 0.033

U-Net + FTL α = 0.7, β = 0.3, γ = 4/3 0.829 ± 0.027 0.797 ± 0.040 0.926 ± 0.012
Attn U-Net + DL α = 0.5, β = 0.5 0.806 ± 0.033 0.874 ± 0.080 0.827 ± 0.055

Attn U-Net + Multi-Input + DL α = 0.5, β = 0.5 0.827 ± 0.055 0.896 ± 0.019 0.829 ± 0.076
Attn U-Net + Multi-Input + TL α = 0.7, β = 0.3 0.841 ± 0.012 0.823 ± 0.038 0.912 ± 0.026

Attn U-Net + Multi-Input + FTL α = 0.7, β = 0.3, γ = 4/3 0.856 ± 0.007 0.858 ± 0.020 0.897 ± 0.014

The ISIC 2018 experiment was trained for 50 epochs with
a batch size of 8. The BUS 2017 dataset was trained for
100 epochs with a batch size of 16. Both models were opti-
mized using stochastic gradient descent with momentum, us-
ing an initial learning rate at 0.01 which decays by 10−6 on
every epoch. These parameters were optimized through a grid
search method [16]. All experiments are programmed using
the Keras framework with the Tensorflow backend and trained
using an NVIDIA GTX 1070 GPU. Open-source implemen-
tation with reproducible results for this paper can be obtained
from https://github.com/nabsabraham/focal-tversky-unet.

4. RESULTS

Table 1 shows that the baseline U-Net trained with the Dice
loss function has the worst performance. The large standard
deviation in the precision and recall scores suggest the learn-
ing is not stable. In contrast, U-Net models trained with TL
and FTL show increased DSC and more balanced precision-
recall scores which occurs due to weighting α higher in the
loss function than β. We observe incorporating attention in U-
Net trained with DL depicts lower Dice scores than the base-
line, probably due to the intra-lesion variation. Injecting an
input pyramid into the model improves the DSC significantly
suggesting features of small lesions are easily lost when class
imbalance is high. Training the attention model with FTL
combines the benefits of improved feature selection with fo-
cused training to outperform all other methods. The proposed
architecture (last row) is able to segment lesions with a Dice
score of 0.804 on training with a small subset of 100 images.

Contrary to the BUS scores, ISIC results in Table 2 show

the baseline U-Net trained with DL performs well due to the
large training sample size, variation in lesion structures and
distinct features present in the RGB images. Training U-Net
with TL and FTL, we observe an improved DSC score. How-
ever, when the Tversky index is high for misclassified exam-
ples, the focal exponent γ suppresses the contribution to the
error signal and since α is weighted higher than β, the model
converges to the highest reported recall at 0.926, but lowest
precision. To address this issue, when training the proposed
attention model, we supervise the last layer with TL so that a
true error signal will still propogate back when the model is
close to convergence. As a result, our improved attention U-
Net model with FTL (last row) obtains slightly lower but over-
all better balanced recall and precision, and, consequently, the
best DSC score. We outperform the baseline by 3.6% with a
low spread of 0.7%.

5. CONCLUSION

In this work, we propose a novel focal Tversky loss function
to improve the precision and recall balance in semantic seg-
mentation. Our experiments demonstrate the importance of
the choice of loss function when dealing with highly imbal-
anced problems and with varying dataset sizes. Moreover, we
improve the attention U-Net proposed in [5] by incorporat-
ing a an input image pyramid into each scale in the model
architecture. The redundancy in the features helps recover
any lost contextual information which is crucial when seg-
menting small ROIs such as lesions. Our proposed method
outperforms the baseline U-Net in Dice scores and presents
balanced precision-recall scores with low standard deviations.
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